Sheet 3 - Solution

1 Use the Smith chart to find the following quantities for the transmission line circuit below:
(a) The SWR on the line.
(b) The reflection coefficient at the load.
(c) The load admittance.
(d) The input impedance of the line.
(e) The distance from the load to the first voltage minimum.
(f) The distance from the load to the first voltage maximum.

$$
\begin{aligned}
& \quad z_{0}=50 \Omega, z_{L}=60+j 50 \Omega, l=0.4 \lambda \\
& \text { From } S \text { mith chant, }\left(z_{L}=1.2+j 1.0\right) \\
& \text { a) } s w R=2.46 \\
& \text { b) } \Gamma=0.422 \angle 54^{\circ} \\
& \text { c) } Y_{L}=(.492-j .410) / 50=9.84-j 8.2 \mathrm{~ms} \\
& \text { d) } z_{\text {in }}=24.5+j 20.3 \Omega \\
& \text { e) } l_{\text {min }}=0.325 \lambda \\
& \text { f) } l_{\text {max }}=0.075 \lambda
\end{aligned}
$$

2 Repeat problem (1) for $\mathrm{Z}_{\mathrm{L}}=40-\mathrm{j} 30 \Omega$. (REPORT)

$$
Z_{0}=50 \Omega, \quad Z_{L}=40-j 30 \Omega, \ell=0.4 \lambda
$$

From Smith chant, $\quad\left(z_{1}=0.80-j 0.60\right)$
a) $S W R=2.00$
b) $\Gamma=0.333 \angle 270^{\circ}$
c) $Y_{L}=(.800+j .600) / 50=16.0+j 12.0 \mathrm{mS}$
d) $Z_{\text {in }}=93.2-j 21.6 \Omega$
e) $l_{\text {MIN }}=0.125 \lambda$
f) $\ell_{\text {max }}=0.375 \lambda$

$$
z_{0}=50 \Omega, \quad z_{L}=60+j 50 \Omega, \quad l=1.8 \lambda
$$

From Smith chant, $\left.\quad Z_{L}=1.2+j 1.0\right)$
a) $S W R=2.46$
b) $\Gamma=0.422 \angle 54^{\circ}$
c) $Y_{L}=(.492-j .410) / 50=9.84-j 8.2 \mathrm{mS}$
d) $z_{\text {in }}=20.8-j 6.7 \Omega$
e) $\ell_{\text {MIN }}=0.325 \lambda$
f) $l_{\text {MAX }}=0.075 \lambda$

4 Use the Smith chart to find the shortest lengths of a short-circuited 75Ω line to give the following input impedance:
(a) $\mathrm{Z}_{\text {in }}=0$.
(b) $\mathrm{Z}_{\text {in }}=\infty$.
(c) $Z_{\text {in }}=j 75 \mathrm{Q}$.
(d) $Z_{\text {in }}=-j 50 \Omega$
(e) $\mathrm{Z}_{\text {in }}=\mathrm{j} 10 \Omega$.
a) $l=0$ or $l=0.5 \lambda$ V
b) $l=0.25 \lambda$
c) $l=0.125 \lambda \mathrm{~V}$ These resulta check
d) $l=0.406 \lambda \quad$ with $z_{\text {in }}=j z_{0} \tan \beta l$.
e) $\ell=0.021 \lambda$

5 Repeat Problem (4) for an open-circuited length of 75Ω line.
(REPORT)
a) $l=0.25 \lambda$ -
(oodd $\lambda / 4$ to resulta of problem 4
b) $l=0 \lambda$ or 0.5λ (alvo cheok with
c) $l=0.375 \lambda$ $\left.z_{\text {in }}=-j z_{0} \cot \beta l\right)$
d) $l=0.656 \lambda-0.5 \lambda=0.156 \lambda$,
e) $l=0.27 / \lambda$

6 A slotted-line experiment is performed with the following results: distance between successive minima $=2.1 \mathrm{~cm}$; distance of first voltage minimum from load $=0.9 \mathrm{~cm} ;$ SWR of load, $=2.5$. If Zo $=50 \Omega$, find the load impedance.

$$
\begin{aligned}
& \lambda=4.2 \mathrm{~cm} \text {. From the } S \text { mith chart, } l_{\text {min }}=.9 / 4.2=0.214 \lambda \\
& \text { from the load, so } z_{L}=2-j .9 \Rightarrow Z_{L}=100-j 45 \Omega \\
& \text { Analyticilly, using }(2.58)-(2.60), \\
& \Gamma=1 \Gamma\left|e^{j \theta},|\Gamma|=\frac{2.5-1}{2.5+1}=0.428\right. \\
& \theta=\pi+2 \beta l_{\text {MIN }}=180+2(360)(.214)=-26^{\circ} \mathrm{V} \\
& \text { Then, } \\
& Z_{L}=\frac{1+.428 L-26^{\circ}}{1-.428 L-26^{\circ}}(50)=50 \frac{1.4 \angle-7.7^{\circ}}{.643 \angle 17^{\circ}}=109 \angle-25^{\circ} \\
& =99-j 46 \Omega
\end{aligned}
$$

Good Luck

